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Abstract: Research has yielded approaches to predict future defects in software artifacts based on historical 

information, thus assisting companies in effectively allocating limited development resources and developers in 

reviewing each other’s' code reduces the cost of maintenance. Developers are unlikely to devote the same effort 

to inspect each software artifact predicted to contain defects, since the effort varies with the artifacts' size (the 

number of LOC and cost) of defects that it exhibits (effectiveness). We propose to use Genetic Algorithms (GAs) 

for training prediction models to maximize their cost-effectiveness. We evaluate the approach on two well-

known models, Regression Tree and Generalized Linear Model, and predict defects between multiple releases of 

5 open source projects. Our results show that regression models trained by GAs significantly outperform their 

conventional counterparts, improving the cost-effectiveness by up to 120 %.  
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I. Introduction  
Statistical modeling has been often utilized in software engineering to assess quality of software 

projects. One of its frequent applications would be to produce prediction models to anticipate exactly where 

defects occur in a software system. Such models are actually valuable in several contexts: For instance, Kim et 

al. show the importance of theirs in effective API testing, where prediction models take the testing effectiveness 

in manufacturing environment [20]. Researchers and practitioners underline the importance of proper allocation 

of computing resources [11], for instance during code assessment [5],to save the appraisal cost of the code. 

During initial research, researchers (e.g., [41]) had examined prediction models to make a binary 

distinction of each an application artifact: Likely or perhaps not very likely to incur in succeeding defects. 

Widely used evaluation metrics were precision as well as recall [41] or maybe the area Under the Curve (AUC) 

of the Receiver Operating Characteristic (ROC) curve. The AUC plots the classes properly classified as 

defective against individuals improperly classified as defective, as the prediction model 's discrimination 

threshold can vary. 

Recently, scientists observed that the effort needed by designers towards inspecting artifacts 

recommended by binary distinction can vary based on the artifact [25]. Bigger and much more complicated 

software artifacts require more inspection effort, therefore hindering both the effectiveness and the usefulness of 

the prediction. As a solution, scientists have suggested to rethink prediction in conditions of cost effectiveness: 

Artifacts must be inspected in the order which maximizes the ratio between the amount of defects discovered as 

well as the effort spent (effort typically approximated by the dimensions of the artifacts) [11]. With this context, 

generally used evaluation metrics are : (i) the cost effective AUC (AUC CE) [11], that represented a weighted 

model of the more conventional AUC metric; and (ii) the P effort metric[11].In every effort aware prediction 

model presented very far| no matter the employed statistical mechanism the design is not immediately taught to 

get the best match to rank on the cost effectiveness, quite to foresee the raw selection of defects, i.e., an 

approximation of it. The concept we offer and assess in this paper is using Genetic algorithms (GAs) to 

immediately tweak the coefficients of a prediction version like that the cost effectiveness on the instruction set is 

actually maximized. Menzies et al. [28] had been the first person to suggest the thought of self-tuning the inner 

parameters of a principle learner to obtain the correct settings, therefore leading to a learner which considerably 

outperforms regular learning strategies [28]; here, we wish to immediately train statistical models. We utilize 

Gas to evolve the coefficients of regression algorithms to create an unit optimizing the cost effectiveness on the 

instruction set, under the presumption that it'll also predict cost effectiveness more efficiently on the 

examination set. We evaluate the idea of ours by applying it and doing an empirical analysis on a selection of 

unique application systems and releases. As the baseline of ours, we think about extensive statistical regression 

models (i.e., generalized linear regression version (GLM) as well as regression trees (RT)) as well as metrics 

(i.e., Kemerer and Chidamber (CK) metrics as well as Lines of Code (LOC)). Our results indicate that our 

strategy significantly outperforms traditional models. 

In earlier endeavors, researchers (e.g., [41]) had studied prediction models to present a binary 

classification of each software program artifact. Commonly used evaluation metrics were precision in addition 

to recall [41] or the area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The 
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AUC plots the classes correctly classified as defective against those wrongly classified as defective, as the 

prediction model 's discrimination threshold may differ.Not too long ago, researchers pointed out that the effort 

expected by developers towards inspecting artifacts indicated by binary classification models differs based on 

the artifact [25]. Larger and a lot more complex software artifacts require extra inspection effort, thereby 

hindering both the usefulness and the effectiveness of the prediction. As a solution, researchers have 

recommended to rethink prediction in terms of cost-effectiveness: Artifacts have to be inspected in the order 

which often maximizes the ratio between the number of defects detected together with the effort spent (effort 

often approximated by the size of the artifacts) [11]. In this particular context, often used evaluation metrics are: 

(i) the cost-effective AUC (AUC-CE) [11], which in turn represents a weighted model of the more classic AUC 

metric; and (ii) the P effort metric [11].  

In every effort aware prediction model presented very far| no matter the employed statistical 

mechanism the design is not immediately taught to get the best match to rank on the cost effectiveness, quite to 

foresee the raw selection of defects, i.e., an approximation of it. The concept we offer and assess in this paper is 

using Genetic Algorithms (GAs) to immediately tweak the coefficients of a prediction version like that the cost 

effectiveness on the instruction set is actually maximized. Menzies et al. [28] had been the first person to 

suggest the thought of self-tuning the inner parameters of a principle learner to obtain the correct settings, 

therefore leading to a learner which considerably outperforms regular learning strategies [28]; here, we wish to 

immediately train statistical models. We utilize GAs to evolve the coefficients of regression algorithms to create 

an unit optimizing the cost effectiveness on the instruction set, under the presumption that it'll also predict cost 

effectiveness more efficiently on the examination set. We evaluate the idea of ours by applying it and doing an 

empirical analysis on a selection of unique application systems and releases. As the baseline of ours, we think 

about extensive statistical regression (i.e., generalized linear regression version (GLM) as well as regression 

trees (RT)) as well as metrics (i.e., Kemerer and Chidamber (CK) metrics as well as Lines of Code (LOC)). Our 

results indicate that our strategy significantly outperforms conventional models. 

 

II. Existing Work  
Researchers devised a number of defect prediction approaches to guide software maintenance as well 

as evolution by identifying more defect software artifacts [11]. These approaches are based on statistical models, 

whose main difference is actually the various sets of predicting metrics and also the underlying algorithms that 

learn from these metrics and make predictions [15,37]. Examples of metrics are the Chidamber and Kemerer's 

object oriented (CK) metrics [10,6], structural metrics [3] or process metrics [29]. Examples of algorithms are 

logistic regression used by Zimmermann et al. [40]; Multi-Layer Perceptron (MLP),radial foundation 

functionality (RBF), k nearest neighbor (KNN), regression tree (RT), dynamic evolving neuro-fuzzy inference 

body (DENFIS), and Support Vector Regression (SVR)used by Elish [fourteen]; Bayesian networks utilized by 

Bechta [31];and Naive Bayes, J48, Alternative Decision Tree (ADTree),and One R believed by Nelson et al. 

[30]. Lately, various other researchers have suggested more advanced machine learning strategies, including 

ensemble learning [23], clustering algorithms [36], and combined techniques [thirty two]. Lessman et 

al.[22]evaluated twenty two classification models and showed that there's simply no statistical difference 

between the top-17 models when classifying software modules as defect susceptible. Meta-heuristics have been 

additionally investigated, such as using genetic algorithms (GAs) [13,19,23] or maybe genetic programming 

(GP) [1] to build prediction design aimed at optimizing standard performance metrics for classification 

problems, such as precision, recall, and f-measure. 

Mende et al. [25], Kamei et al. [18], Menzies et al. [28], and D 'Ambros et al. [11] are actually among 

the first to warn of the significance of taking into consideration the effort necessary to review the documents 

recommended by prediction models. Traditional performance metrics employed for binary predictions 

(precision, recollection, f-measure, AUC [32], error variance, median error, error sum, and correlation [11]) 

aren't well suited to assessprediction since they provide exactly the same priority/importance to all defect prone 

software components. Rather, in useful scenario engineers would gain from determining those software 

components apt to contain far more defects earlier, or perhaps requiring lower inspection price at the exact same 

number of defects. Consequently, prediction techniques must be cost e ective, the place that the effectiveness is 

actually number of defects to foresee as well as the assessment cost is actually approximated by the collections 

of code (LOC) metric, depending on the intuition that bigger files call for effort and time more to discuss than 

smaller files [11,25,18].Previous labor suggested performance metrics (e.g., AUC CE and Peffort) created for 

evaluating the cost effectiveness of prediction models [11, 34,17,32, 33,28]. Nevertheless, the designs were still 

made working with conventional knowledge algorithms; for instance, D 'Ambros et al. [11] trained conventional 

linear regression models with the classical iteratively re weighted very least square algorithm; Rahman and 

Devanbu [33] used 4 different machine learning strategies (i.e., SVM, J48, Logistic Regression, and Naive 

Bayes) that had been used in utilizing the corresponding classical instruction algorithms. 
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III. Generalized Linear Model(GLM) Regression 
A Generalized Linear Model (GLM)is a model ,is basically a regression model with relaxed rules, 

consists of three components: (I)a link function (II) a variance function(μ) and(III) Independent Variables . The 

link relates the means of the observations to predictors: linearization (μ) The variance function relates the means 

to the variances. In our case the (i) independent variables I = {I1,I2….Ik }are the software metrics used as 

explanatory variables of the scalar dependent variable Y , i.e., the number of defects. The (ii) linear function 

condenses the independent variable into a scalar value with a set of linear coefficients β ={α,β1,β2…βk} such 

that 

 

η=α+þ1×I1  +þ2   × I2 + ⋯ + þk×Ik (1) 

 

The link function ϝ that provide the relationship between the expectation of the outcome and the linear function.  

 

ϝ=α+þ1×I1  +þ2   × I2 + ⋯ + þk×Ik  (2) 

 

If the above function represents the variables from normal distribution then the equation corresponds to 

traditional multinomial regression. The General Linear Model (GLM) ,in Eq (2) find the set of coefficients β 

={α,þ1, þ2, … . . þk}  such that the corresponding model ϝ minimizes 

the Mean Squared Error (MSE) between predicted value and actual outcome. 

 

3.1 Regression Tree 

A regression tree is similar to a decision tree where internal decision nodes contains the decision rules 

on software metrics while leaf nodes are defect prediction outcomes. The decision rules are based on the 

software metric Mi and coefficient xi verifies the test condition is reached or not , thus by partitioning the space 

in to two branches (true or false) 

 
Figure 1 Regression Tree 

 

IV. Proposed Approach 
We propose that if the aim of the prediction model is cost effectiveness and evaluated differently with 

respect to traditional models then the models trained using deferent approach would show better results. Hence 

we propose to modify model training such that software engineering artifacts with higher defect density will be 

given higher priority. 

In this regard, we wish to maximize the Mean Squared Error (MSE), which is ration between 

cumulative number of defects and amount of code under inspection. Let A={a1a2….ak} be the list of artifacts to 

be reviewed in the training set ordered by their predicted scores computed by the regression equation from Eq 

(2) where β= {þ1þ2….þk}  is a set of regression coefficients. We hypothesize the defect prediction as: 

 

To find the set of regression coefficients β = {þ1, þ2….þk} from regression equation (2) 

such that coefficients maximizes the cost-effectiveness i.e maximizing the cumulative number 

of  defects  while  inspecting  the  Lines  of  Code  for  the predicted  artifacts  in  the  order 

O={o1o2….ok}     

φmax( ϝ) =  ∑n    { ∑i–1 {defects Oj × LOC(Oi)}} Eq(3) 

i=2 j=1 Eq(3) 

     

Where ∑i–1 actual Oj  
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represents cumulative defects for the first( i-1) artifacts.  

FinallyLOC (Oi) measures the lines of code(LOC) of ith artifact as shown in following figure (Fig 

(2)).[25,4,11,8,32,9] 

 
Figure 2 Graphical representation of proposed approach 

 

The function in Equation (3) represents the AUC-CE using the rectangle rule The abovementioned 

figure (Fig (2)) represents the cost effectiveness of software artifacts from the regression model in the equation 

2.In the above figure Y-axis plots the cumulative defects when analyzing the first i artifacts whose cumulative 

effort (cost ) is on x-axis 

 

Training the Model with GA 

To solve the maximization problem we apply nature inspired GA on the Regression Trees and GLM. 

The search space represents possible sets of linear combination of coefficients β = 

{α,þ1…..þn} for GLM and X= {x1, x2……xn} Decision coefficients of RT. 

The algorithm starts with a randomly generated GLM or RT configurations. During the subsequent 

iterations, the population is evolved with genetic operators such as (i) selection (ii) Crossover and (iii) Mutation 

. During each iteration, the coefficients are evaluated according the function represented in equation (2). The 

best or fittest coefficients are selected using selection operator. During the same time new set of coefficients are 

generated by re- combination technique using Crossover and Mutation operators. After each generation finally 

selected coefficients are used as starting point for next selection or iteration cycle. 

 

V. Experimental Result 
In order to evaluate the cost – effectiveness in our approach compared to traditional approach we present the 

design of study as follows. 

Data from open source, PROMISE repository, projects based on Java are selected for our study and 

details are mentioned on the following table. (ref Tab (1)) 

 

Table 1 Projects used for our study 
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Dataset Release # Classes 
% Defective 

Classes 

Average 

No.Of Defects 

Velocity 1.4 197 74.62 1.4 

 1.5 215 66.05 2.3 

 1.6 237 33.91 2.4 

Xlan 2.4 724 15.2 1.4 

 2.4 804 48.1 1.3 

 2.6 886 46.4 1.5 

 2.7 910 98.7 1.4 

Synapse 1.0 157 10.2 1.31 

 1.1 222 27.0 1.65 

 1.2 256 33.6 1.67 

Lucene 2.0 196 46.4 2.9 

 2,2 248 58.1 2.8 

 2.4 341 59.53 3.1 

Poi 1.0 237 59.5 2.4 

 1.5 315 11.8 1.1 

 2.0 387 64.4 2 

 2.5 443 65.6 1.8 

  
We have selected the datasets which are having multiple releases to prove our approach. For each 

project we have considered LOC and CK metrics for as they are reliable and evaluated for cost –effectiveness in 

our approach. We have selected CK metrics as they are widely used for quality assessment of Object Oriented 

projects. 

The following tabulated shows the result of P effort scored by traditional Rregression Tree (RT) and Ga 

based RT. The Peffort achieved over 30 runs as well as corresponding standard deviation. From the results it is 

very clear that the GA based regression models significantly outperform the their counterparts for predicting P 

effort . 

 

Table 2 The average Peffot by RT model and GA trained RT model 
 

Dataset 

 

Training 

 

Test 
RT RT-GA  

Improvement 
Mean St Dev Mean St Dev 

Velocity 1.4 1.5 0.692  0.87 0.01 26% 

 1.5 1.6 0.45  0.81 0.03 80% 

Xlan 2.4 2.5 0.43  0.73 0.09 70% 

 2.5 2.6 0.55  0.81 0.006 47% 

 2.6 2.7 0.43  0.91 0.03 112% 

Synapse 1.0 1.1 0.54  0.57 0.003 6% 

 1.1 1.2 0.64  0.68 0.035 6% 

Lucene 2.0 2.2 0.64  0.8 0.017 25% 

 2,2 2.4 0.52  0.7 0.037 35% 

Poi 1.0 1.5 0.39  0.53 0.024 36% 

 2.0 2.5 0.46  0.63 0.025 37% 

  
 

VI. Conclusion  
In this paper we have hypothesized that the defect prediction may not reach its entitlement as they are 

trained on a task that is totally deferent from defect prediction cost-effectiveness. Current statistical based 

models are used to find the best fit to predict the artifacts having defects while our approach is to rank the 

artifacts based on defect density for most cost-effectiveness.The proposed GA based approach is designed 

overcome the limitations of traditional methods so that artifacts exhibit more defects are given higher priority. 

Results from the Table (2) clearly suggest that the GA based approach is useful. 

Future research need to investigate if our approach can be extended to other models such as Naïve 

Bayesian and Artificial Neural Networks as well as to other software metrics other than CK metrics. Further 

research is also required to study the influence of project size on the same. 
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